Schemata Bandits for Binary Encoded Combinatorial Optimisation Problems
نویسندگان
چکیده
We introduce the schema bandits algorithm to solve binary combinatorial optimisation problems, like the trap functions and NK landscape, where potential solutions are represented as bit strings. Schema bandits are influenced by two different areas in machine learning, evolutionary computation and multiarmed bandits. The schemata from the schema theorem for genetic algorithms are structured as hierarchical multi-armed bandits in order to focus the optimisation in promising areas of the search space. The proposed algorithm is not a standard genetic algorithm because there are no genetic operators involved. The schemata bandits are non standard schemata nets because one node can contain one or more schemata and the value of a node is computed using information from the schemata contained in that node. We show the efficiency of the designed algorithms for two binary encoded combinatorial optimisation problems.
منابع مشابه
Geometric Generalisation of Surrogate Model Based Optimisation to Combinatorial Spaces
In continuous optimisation, Surrogate Models (SMs) are often indispensable components of optimisation algorithms aimed at tackling real-world problems whose candidate solutions are very expensive to evaluate. Because of the inherent spatial intuition behind these models, they are naturally suited to continuous problems but they do not seem applicable to combinatorial problems except for the spe...
متن کاملCombinatorial Cascading Bandits
We propose combinatorial cascading bandits, a class of partial monitoring problems where at each step a learning agent chooses a tuple of ground items subject to constraints and receives a reward if and only if the weights of all chosen items are one. The weights of the items are binary, stochastic, and drawn independently of each other. The agent observes the index of the first chosen item who...
متن کاملPolynomial unconstrained binary optimisation – Part 1 Fred Glover
The class of problems known as quadratic zero-one (binary) unconstrained optimisation has provided access to a vast array of combinatorial optimisation problems, allowing them to be expressed within the setting of a single unifying model. A gap exists, however, in addressing polynomial problems of degree greater than 2. To bridge this gap, we provide methods for efficiently executing core searc...
متن کاملPolynomial unconstrained binary optimisation - Part 2
The class of problems known as quadratic zero-one (binary) unconstrained optimisation has provided access to a vast array of combinatorial optimisation problems, allowing them to be expressed within the setting of a single unifying model. A gap exists, however, in addressing polynomial problems of degree greater than 2. To bridge this gap, we provide methods for efficiently executing core searc...
متن کاملClasses of Submodular Constraints Expressible by Graph Cuts ∗ Stanislav
Submodular constraints play an important role both in theory and practice of valued constraint satisfaction problems (VCSPs). It has previously been shown, using results from the theory of combinatorial optimisation, that instances of VCSPs with submodular constraints can be minimised in polynomial time. However, the general algorithm is of order O(n) and hence rather impractical. In this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014